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Introduction

We consider the following decentralized composite optimization problem:

min
x∈Rd

Φ(x) := F (x) + Ψ(x)︸︷︷︸
cvx, shared

, F (x) :=
1

n

n∑
i=1

Fi(x)︸ ︷︷ ︸
ncvx, known to agent i

,

where each function Fi(x) is a smooth function only known to the agent i; Ψ(x)
is non-smooth, convex, and shared across all agents.

Our goal is to design efficient stochastic one-sample algorithms for solving the
above problem, given access to noisy evaluations of ∇Fi’s and Fi’s on agent i.
Algorithm 1: Prox-DASA(-GT)
Input: x0i = z0i = u0i = 0, γ, {αk}≥0,m
for k = 0, 1, . . . , K do
# Local Update
for i = 1, 2, . . . , n (in parallel) do

x̃k+1i = (1− αk)x
k
i + αk prox

γ
Ψ

(
xki − γzki

)
# Compute stochastic gradient vk+1i = ∇Gi(x

k
i , ξ

k+1
i )

ũk+1i =

{
vk+1i Prox-DASA

uki + vk+1i − vki → Gradient tracking Prox-DASA-GT

z̃k+1i = (1− αk)z
k
i + αkũ

k+1
i

end
# Communication
[xk+11 , . . . , xk+1n ] = [x̃k+11 , . . . , x̃k+1n ]Wm

[zk+11 , . . . , zk+1n ] = [z̃k+11 , . . . , z̃k+1n ]Wm

[uk+11 , . . . , uk+1n ] = [ũk+11 , . . . , ũk+1n ]Wm → Communication of GT variable
end

Communication network:

(credit to Vecteezy.com)

Weight matrix W:

1/3 1/3 0 0 0 1/3
1/3 1/3 1/3 0 0 0
0 1/3 1/3 1/3 0 0
0 0 1/3 1/3 1/3 0
0 0 0 1/3 1/3 1/3

1/3 0 0 0 1/3 1/3


ρ = 2/3

Remarks
• Accelerated Consensus: Wm can be replaced with a Chebyshev-type poly-

nomial of W to improve the dependency on ρ: 1
1−ρ →

1√
1−ρ

.

• Why one-sample algorithm? To reduce per-iteration cost and memory us-
age, improve generalization, and bridge the gap between theory and practice.

Theoretical Results

Measure of Non-stationarity
• Gradient Mapping (GM): G(x, z, γ) = 1

γ (x− proxγ
Ψ(x− γz)) .

• Random vectors X = [x1, . . . , xn] generated by an algorithm is an ϵ-
stationary point in terms of GM, if we have

(stationarity violation) E
[
∥G(x̄,∇F (x̄), γ)∥2

]
≤ ϵ,

(consensus error) E
[
L2
∇F

n

∥∥X− X̄
∥∥2] ≤ ϵ.

Assumptions
• (Network topology) W = (wij) ∈ Rn×n is symmetric and doubly stochastic,

i.e., wij ≥ 0,W⊤ = W,W1 = 1,1⊤W = 1⊤. and its eigenvalues satisfy
1 = λ1 > λ2 ≥ · · · ≥ λn and ρ := max{|λ2|, |λn|} < 1.

• (Smoothness) All functions {Fi}1≤i≤n have Lipschitz continuous gradients.

• The function Ψ : Rd → R ∪ {+∞} is a closed proper convex function.

• (Stochastic oracles) All stochastic gradients are unbiased with bounded vari-
ance. Different stochastic gradients are independent.

• (Bounded heterogeneity for Prox-DASA) There exists a constant ν ≥ 0
such that for all 1 ≤ i ≤ n, x ∈ Rd, ∥∇Fi(x)−∇F (x)∥ ≤ ν.

Main Results
Suppose the total number of iterations K ≥ K0, αk ≍

√
n
K , γ ≍ 1

L∇F
.

Let C0 be an initialization-dependent constant and R ∼ Unif{1, 2, . . . , K}.

(Prox-DASA) For Algorithm 1 we have

E
[
∥z̄R−∇F (x̄R))∥2

]
≲

(VR property)︷ ︸︸ ︷
E
[∥∥G(x̄R,∇F (x̄R), γ)

∥∥2]
stationarity violation

≲
L∇FC0 + σ2

√
nK

centralized convergence

+

E
[
L2∇F
n ∥XR−X̄R∥2

+1
n∥ZR−Z̄R∥2

]
≲︷ ︸︸ ︷

n(σ2 + L2
∇Fν

2)ρ2m

K
consensus error

.

(Prox-DASA-GT) Similar results hold for Algorithm 1 with GT when ν = ∞.

Complexity. For any ϵ > 0, the sample complexity per agent for finding ϵ-
stationary points are O(max{n−1ϵ−2, KT}) where KT is the transient time.

•m = 1 yields a topology-independent communication complexity O(n−1ϵ−2)
with transient time KT depending on ρ.

•m ≍ ⌈ 1
1−ρ⌉ (or m ≍ ⌈ 1√

1−ρ
⌉ for accelerated consensus algorithms) results in

a topology-independent transient time.

Comparisons

Algorithm Batch Size Sample
Complexity

Communication
Complexity

Linear
Speedup? Remark

ProxGT-SA O(ϵ−1) O(n−1ϵ−2) O(log(n)ϵ−1) ✓

ProxGT-SR-O O(ϵ−1) O(n−1ϵ−1.5) O(log(n)ϵ−1) ✓
SVRG: (i) double-loop;

(ii) mean-squared smoothness

DEEPSTORM
O(ϵ−0.5) then O(1)∗ O(n−1ϵ−1.5) O(n−1ϵ−1.5) ✓ STORM: (i) two time-scale;

(ii) mean-squared smoothness;
(iii) two gradient evaluations per iter.O(1) O(ϵ−1.5| log ϵ|−1.5) O(ϵ−1.5| log ϵ|−1.5) ✗

Prox-DASA O (1) O(n−1ϵ−2) O(n−1ϵ−2) ✓ bounded heterogeneity

Prox-DASA-GT O (1) O(n−1ϵ−2) O(n−1ϵ−2) ✓

∗ It requires O(ϵ−0.5) batch size in the first iteration and then O(1) for the rest.

Experimental Results
Decentralized traning sparse neural networks for classification tasks on MNIST:

min
θ∈Rd

1

n

n∑
i=1

1

|Di|
∑

(x,y)∈Di

ℓi(f (x; θ), y) + λ∥θ∥1,

Faster and more stable training using small batch sizes!
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Contributions and Takeaway
Existing works have several drawbacks: increasing batch sizes, algorithmic
complexities, and theoretical weakness.
Our algorithms achieve linear speedup with O(1) batch size under mild as-
sumptions without using complicated variance reduction (VR) techniques.
Moving-Average update is all you need!


