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Introduction

We consider the following decentralized composite optimization problem:

1
min $(x) = Flx)+ VY(z) , Flx)=-— Fi(x ,
my 8c)=F@)+ Wa), F@=13 B
cvx, shared = ncvx, known to agent ¢

where each function F;(x) is a smooth function only known to the agent ¢; WV (x)
1s non-smooth, convex, and shared across all agents.

Our goal 1s to design efficient stochastic one-sample algorithms for solving the
above problem, given access to noisy evaluations of V F;’s and F;’s on agent 1.

Algorithm 1: Prox—DASA (-GT)

Input: 2! = 2 = u) = 0,v, {as}>0, m

for k=0,1,..., K do

# Local Update

for:=1,2,....n( in parallel) do

Pl = (1 — ozk) + ay proxy, (zf — yz))

il Compute stochastic gradient ka VGZ-(:CQ?, ff“)

phtl Prox—-DASA

~k+1 z
U; = 9 k+1

~k—|—1
i

~ k+1

(1 — ozk)z + ayt;
end

# Communication
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— Communication of GT variable

end

Communication network:
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Weight matrix W:

(credit to Vecteezy.com) p=2/3
Remarks
e Accelerated Consensus: W' can be replaced with a Chebyshev-type poly-
nomial of W to improve the dependency on p: 1ip > 11_p°

 Why one-sample algorithm? To reduce per-iteration cost and memory us-
age, improve generalization, and bridge the gap between theory and practice.

Theoretical Results

Measure of Non-stationarity
* Gradient Mapping (GM): G(z,z2,7v) = (az — prox;(z —vz)).

e Random vectors X = |z1,...,Z,) generated by an algorithm 1s an e-
stationary point in terms of GM, if we have

(stationarity violation)
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E |9z, VF @),
B | X - X|P| <e

(consensus error)

Assumptions

* (Network topology) W = (w;;) € R"*" is symmetric and doubly stochastic,

ie,w; > 0,W' =W W1=11"W = 1" and its eigenvalues satisfy
L= >N >---2> )\, ande: max{|)\2],\)\n\}< L.

* (Smoothness) All functions { F; },<;<,, have Lipschitz continuous gradients.
e The function ¥ : RY — R U {400} is a closed proper convex function.

e (Stochastic oracles) All stochastic gradients are unbiased with bounded vari-
ance. Different stochastic gradients are independent.

e (Bounded heterogeneity for Prox—DASA) There exists a constant v > (
such that forall 1 < i < n,x € (x)— VF(x)|| <

Main Results
]

Suppose the total number of iterations K > Ky, ap <X (/7,7 = T
Let Cy be an initialization-dependent constant and R ~ Unif{1,2, ...

(Prox-DASA) For Algorithm 1 we have

K.
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StClthﬂCll’lfy violation consensus error

centralized convergence

(Prox-DASA-GT) Similar results hold for Algorithm 1 with GT when v = oc.

Complexity. For any ¢ > 0, the sample complexity per agent for finding e-

stationary points are O(max{n e, Kr}) where K7 is the transient time.

*m = 1 yields a topology-independent communication complexity O(n -1 _2)

with transient time K7 depending on p.

°*m X (1%/0] (or m < (ﬁ] for accelerated consensus algorithms) results in
a topology-independent transient time.
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Comparisons
. . Sample Communication | Linear
Algorithm Batch Size Complexity Complexity Speedup? Remark
ProxGT—SA O(e 1) O(n~te?) O(log(n)e™1) v
_ 1 _ SVRG: (1) double-loop;
_QR_ 1 1.—1.5 1
ProxGl=SR=0 Ole™) On™"e ) Ollog(n)e™") d (1) mean-squared smoothness
O(e7) then O(1) O(n~te 1) O(n~te 1) v STORM: (i) two time-scale;
DEEPSTORM (11) mean-squared smoothness;
on) O(e_l'5| log e\_1'5) 0(6_1_5’ log €|_1.5) X (1i1) two gradient evaluations per iter.
Prox-DASA O (1) O(n~te?) O(n~te™?) v bounded heterogeneity
Prox-DASA-GT O (1) O(n~te ?) O(n~te™?) v

* It requires O (e

Experimental Results

~U-9) batch size in the first iteration and then (1) for the rest.

Decentralized traning sparse neural networks for classification tasks on MNIST:

min —
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Faster and more stable training using small batch sizes!
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Contributions and Takeaway
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Existing works have several drawbacks: Increasing batch sizes, algorithmic
complexities, and theoretical weakness.

Our algorithms achieve linear speedup with O(1) batch size under mild as-
sumptions without using complicated variance reduction (VR) techniques.

Moving-Average update is all you need!




