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Introduction

We consider the following multi-level composition optimization problem:

min  F(x):= fio---o fr(x),

reX
where f; : R% — R%1 4 = 1,...,T are continuously differentiable (d, = 1),
F(x) is possibly nonconvex and bounded below by F* > —oo0, and X C R%is a
closed convex set. Our goal 1s to design online projection-free algorithms solving

Ghadimi?

Theoretical Results

Measure of Non-stationarity

 Gradient Mapping (GM): Gy (2, VF(Z),5) = (:7; — Iy (5:' — %VF(&:)))
A point x € X generated by an algorithm 1s called an e-stationary point 1n
terms of GM, if we have E[||Gy(z, VF(z), 8)||?] < e.

 Frank-Wolfe Gap: ¢gy(Z, VF(Z)) := max (VF(Z),7 — y)
e

A point x € A generated by an algorithm 1s called an e-stationary point in
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the above problem, given access to noisy evaluations of V f;’s and f;’s.

Algorithm

Linearized Nested Averaged Stochastic Approximation with Inexact Conditional

Gradient Methods (LiNASA+ICG)

Input: 1 € X, 2" =0 R, W) e RY i =1,...,T, B > 0,t, > 0,7, € (0,1],6 > 0.
for £k =0,1,2,..., Ndo
1. Update the solution:

and compute stochastic Jacobians JZ-]“H, and function values Gf“ at uf fore=1,...,7T.
2. Update average gradients z and function value estimates u; for each level 1 = 1,... 7T
T
k+1 _ k k+1
1=1
| S —
biased gradient obtained by chain rule
k+1 _ k k+1 k+1 | k+1 k
u; = (1 —T1p)u; + G+ (ST — gy )

end for

Output: (xR, Ay

A

?jk — ICG(xk,zk,Bk,tk,é), T

N

inexact solution of the projection step by Frank-Wolfe methods

R R)

17...’u

Procedure I1CG(z, z, 5, M, )
Set w' = 7.
fort=0,1,2,...,M do

1. Find v' € X with a quantity § > 0 such that

R A
2. Set wtt = (1 — pp)w! + pyo’ with 1y = min {1, w(xﬁﬁiz_;’tﬁQ w) }

end for
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J

= 2" + 7 (y" — 2,

linearization helps to get rid of level-dependent batch size

2
(24 B — o), o) < min (2 4 B(w' ~z),v) + 5751?25
N——

Output: wM

, where R is uniformly distributed over {1,2,..., N}

error tolerance of LMO

terms of FW-gap, if we have E|gy(Z, VF(Z))] < e.

Main Results
Under regular conditions:

e X C R%is convex and closed with diameter Dy > 0:

 f1,..., fr and their derivatives are Lipschitz continuous;
e J¥, G%’s are unbiased, mutually independent, and have bounded second mo-
ment.

Let {z%, 2% {ur}i<i<7}r>0 be the sequence generated by LiNASA+ICG with
N > 1,7’0 — 1,t0 = (0 and

Br=p>0, 7m=1/VN, t.=][VE]

we have E ||| fi(uf)) — u'|]?] < Or (1/\/N) 1< < T, upyq = u,

[/

vk > 1

E[IIGx(x", VF("), 8)|"] < 0r (1/VN).

High-probability Bound for 7' =1

Let A = VF(z%) — JF for k > 0. For each k, given .#; we have
E[A*.2] = 0 and ||A*"|| | %, is K-sub-Gaussian. Let 7y = 1,%; = 0,
T = \/—%,tk — [Vk],Vk > 1. Let T = 1 and let {z*, 2*},~, be the sequence
generated by ASA+ICG with 8 = [ > 0. Then, under above assumptions, we

have VN > 1,0 > 0, with probability at least 1 — 9,

Experimental Results

To recover a low-rank matrix 5 from the following matrix-valued single-index
model with low-rank constraints: y = [(A, B*)p|* + ¢, rank(B*) < s, , one can
optimize the mean squared loss with nuclear norm constraint, in which the Frank-
Wolfe update 1s much cheaper than the projection operator especially with large-
scale matrices.

min F(B) =E4, [(y — [(4, B>F‘2>2]

s.t. || B, < s.
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Contributions

Complexity results for stochastic conditional gradient type algorithms to find an
e-stationary solution in the nonconvex setting. (SFO: Stochastic First-order Ora-
cle; LMO: Linear Minimization Oracle)

Algorithm Criterion # of levels |Batch size| SFO LMO

SPIFER-SFW [4]| FW-gap (GM) 1 O | O3 O3
1-SEW [5] FW-gap (GM) 1 1 O(e™3)  O(e?)
SCFW [1] FW-gap (GM) 2 1 O(e™) | O(e™)
SCGS [3] GM 1 Ol 10?2 | O(e7?)
SGD+ICG [2] GM 1 O™l 0?2 | O(e?)
LiNASA+ICG GM T 1 Op(e=?) Op(e3)

e Existing one-sample based stochastic conditional gradient algorithms are either
(1) not applicable to the case of general 1" > 1, or (11) require strong assump-
tions [S], or (111) are not truly online [1]

e LiNASA+ICG 1s completely parameter-free for any 1" > 1

o[ = 1, we provide the fisrt high-probability results for nonconvex constrained
stochastic optimization
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