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Introduction

We consider the following multi-level composition optimization problem:

min
x∈X

F (x) := f1 ◦ · · · ◦ fT (x),

where fi : Rdi → Rdi−1, i = 1, ..., T are continuously differentiable (d0 = 1) ,
F (x) is possibly nonconvex and bounded below by F ⋆ > −∞, and X ⊂ Rd is a
closed convex set. Our goal is to design online projection-free algorithms solving
the above problem, given access to noisy evaluations of ∇fi’s and fi’s.

Algorithm

Linearized Nested Averaged Stochastic Approximation with Inexact Conditional
Gradient Methods (LiNASA+ICG)

Input: x0 ∈ X , z0 = 0 ∈ Rd, u0i ∈ Rdi, i = 1, . . . , T , βk > 0, tk > 0, τk ∈ (0, 1], δ ≥ 0.
for k = 0, 1, 2, . . . , N do

1. Update the solution:

ỹk = ICG(xk, zk, βk, tk, δ),︸ ︷︷ ︸
inexact solution of the projection step by Frank-Wolfe methods

xk+1 = xk + τk(ỹ
k − xk),

and compute stochastic Jacobians Jk+1i , and function values Gk+1
i at uki+1 for i = 1, . . . , T .

2. Update average gradients z and function value estimates ui for each level i = 1, . . . , T

zk+1 = (1− τk)z
k + τk

T∏
i=1

Jk+1T+1−i︸ ︷︷ ︸
biased gradient obtained by chain rule

,

uk+1i = (1− τk)u
k
i + τkG

k+1
i + ⟨Jk+1i , uk+1i+1 − uki+1⟩︸ ︷︷ ︸

linearization helps to get rid of level-dependent batch size

.

end for
Output: (xR, zR, uR1 , · · · , u

R
T ), where R is uniformly distributed over {1, 2, . . . , N}

Procedure ICG(x, z, β,M, δ)
Set w0 = x.
for t = 0, 1, 2, . . . ,M do

1. Find vt ∈ X with a quantity δ ≥ 0 such that

⟨z + β(wt − x), vt⟩ ≤ min
v∈X

⟨z + β(wt − x), v⟩ +
βD2

X δ

t + 2︸ ︷︷ ︸
error tolerance of LMO

.

2. Set wt+1 = (1− µt)w
t + µtv

t with µt = min

{
1,

⟨β(x−wt)−z,vt−wt⟩
β∥vt−wt∥2

}
.

end for
Output: wM

Theoretical Results
Measure of Non-stationarity

• Gradient Mapping (GM): GX (x̄,∇F (x̄), β) := β
(
x̄− ΠX

(
x̄− 1

β∇F (x̄)
))

A point x̄ ∈ X generated by an algorithm is called an ϵ-stationary point in
terms of GM, if we have E[∥GX (x̄,∇F (x̄), β)∥2] ≤ ϵ.

• Frank-Wolfe Gap: gX (x̄,∇F (x̄)) := max
y∈X

⟨∇F (x̄), x̄− y⟩

A point x̄ ∈ X generated by an algorithm is called an ϵ-stationary point in
terms of FW-gap, if we have E[gX (x̄,∇F (x̄))] ≤ ϵ.

Main Results
Under regular conditions:

•X ⊂ Rd is convex and closed with diameter DX > 0;

• f1, . . . , fT and their derivatives are Lipschitz continuous;

• Jk
i , G

k
i ’s are unbiased, mutually independent, and have bounded second mo-

ment.

Let {xk, zk, {uki }1≤i≤T}k≥0 be the sequence generated by LiNASA+ICG with
N ≥ 1, τ0 = 1, t0 = 0 and

βk ≡ β > 0, τk = 1/
√
N, tk = ⌈

√
k⌉, ∀k ≥ 1,

we have E
[
∥fi(uRi+1)− uRi ∥2

]
≤ OT

(
1/
√
N
)
, 1 ≤ i ≤ T, uT+1 = x,

E
[
∥GX (x

R,∇F (xR), β)∥2
]
≤ OT

(
1/
√
N
)
.

High-probability Bound for T = 1

Let ∆k+1 = ∇F (xk) − Jk+1
1 for k ≥ 0. For each k, given Fk we have

E[∆k+1|Fk] = 0 and ∥∆k+1∥ | Fk is K-sub-Gaussian. Let τ0 = 1, t0 = 0,
τk = 1√

N
, tk = ⌈

√
k⌉,∀k ≥ 1. Let T = 1 and let {xk, zk}k≥0 be the sequence

generated by ASA+ICG with βk ≡ β > 0. Then, under above assumptions, we
have ∀N ≥ 1, δ > 0, with probability at least 1− δ,

min
k=1,...,N

∥∥GX (x
k,∇F (xk), β)

∥∥2 ≤ O
(
K2 log(1/δ)√

N

)

Experimental Results
To recover a low-rank matrix B from the following matrix-valued single-index
model with low-rank constraints: y = |⟨A,B⋆⟩F |2 + ϵ, rank(B⋆) ≤ s, , one can
optimize the mean squared loss with nuclear norm constraint, in which the Frank-
Wolfe update is much cheaper than the projection operator especially with large-
scale matrices.

min F (B) = EA,ϵ

[
(y − |⟨A,B⟩F |2)2

]
s.t. ∥B∥⋆ ≤ s.
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Contributions
Complexity results for stochastic conditional gradient type algorithms to find an
ϵ-stationary solution in the nonconvex setting. (SFO: Stochastic First-order Ora-
cle; LMO: Linear Minimization Oracle)
Algorithm Criterion # of levels Batch size SFO LMO
SPIFER-SFW [4] FW-gap (GM) 1 O(ϵ−1) O(ϵ−3) O(ϵ−2)

1-SFW [5] FW-gap (GM) 1 1 O(ϵ−3) O(ϵ−3)

SCFW [1] FW-gap (GM) 2 1 O(ϵ−3) O(ϵ−3)

SCGS [3] GM 1 O(ϵ−1) O(ϵ−2) O(ϵ−2)

SGD+ICG [2] GM 1 O(ϵ−1) O(ϵ−2) O(ϵ−2)

LiNASA+ICG GM T 1 OT (ϵ
−2) OT (ϵ

−3)

• Existing one-sample based stochastic conditional gradient algorithms are either
(i) not applicable to the case of general T > 1, or (ii) require strong assump-
tions [5], or (iii) are not truly online [1]

•LiNASA+ICG is completely parameter-free for any T ≥ 1

•T = 1, we provide the fisrt high-probability results for nonconvex constrained
stochastic optimization
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